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HEAT EXCHANGE OF A CYLINDER WITH
LOW-FREQUENCY OSCILLATIONS

V. B. Repin UDC 536.25

It is well known that the presence of a sonic field intensifies heat-mass exchange processes [1-3], and
that this intensification is due to the presence of stationary secondary flows formed near the solid surface [1].
However, existing theoretical treatments of this question are limited to the case of high-frequency oscillations,
while the situation in which the thickness of the Stokes layer is comparable to or larger than the size of the
body is no less important, For example, such a situation is realized in heating devices operating in a high-
frequency instability regime and using atomized liquid or solid fuel. These problems are of importance in
thermoanemometry. In the present study the example of a circular cylinder will be used to study the effect
of low-frequency oscillations on local and integral characteristics of the heat exchange process. By low fre-
quency, we refer to the region where the Stokes layer thickness [0a¢ ~ (v /w)%%] is comparable to or larger than
the cylinder size.

Let a circular cylinder of radius a and infinite length be located within an infinite viscous liquid, which
at an infinite distance from the cylinder undergoes oscillations following a harmonic law with cyclical fre-
quency w, The temperatures of the cylinder surface TW and the surrounding medium Tw are considered con-
stant, and the temperature difference (TW — Tu) is assumed so small that changes in the physical properties
of the liquid and natural convection may be neglected, Also neglecting dissipative effects, we write the energy
equation in the form [3]:

ar s AP, T H o
w T e L (L
with boundary conditions
T=14fr r=0,T=0for r— oo, @)

The dimensionless quantities in Egs. (1), (2) are defined as follows:
r = (F — aYla, v = §/Ba, 1 = 10, T = (T — PIT—~ Ta),
where e =S/a; H= Sac/a; 8gp = V v/w; 8 is the amplitude of the acoustical displacement of the medium; B = Sw

is the amplitude of the velocity pulsations. The tilda superscript denotes quantities having dimensions.

We will consider the case in which € < 1 (a similar assumption was used in solving the hydrodynamic
portion of the probiem {4]). Then, using the perturbation method, we write the solution of Eq. (1) in the form
of a series

I'=T,—¢el, + 0% 3)
and similarly represent the velocity field
P o=y + ey + O, )

We recall that according to {4}, 4, is a periodic function of time with frequency w and contains no time-inde-
pendent component, while ¢, consists of two components, a stationary ;b?t and a periodic z/)?, which varies with
a cyclical frequency 2w,

Since we are interested in the effect of low-frequency oscillations on the heat exchange of the circular
cylinder, we will assume further that H = G(1).

We will consider the case where Pr = G(1), Substituting Egs. (3), @) in Eq. (1) and collecting terms with
identical powers of &€, we obtain the following equations:

Kazan'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 67-72, Sep-
tember~-October, 1981. Original article submitted June 30, 1980.
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We will consider Eq. (5a). We write T as the sum of stationary and pulsating components
Ty - Tic o Top
and write separately equations for each component

OTOP R

0T P
N st
V2T, == 0. (6b)

§ p
— V213 63a)

Since in boundary conditions (2) there is no time dependence, then Top = 0, Consequently, the temperature T,
is independent of time, and as follows from Eq. (6b}, the heat liberation process is determined by thermal
conductivity alone (in this case for the cylinder Nu = 0), We are interested in the situation in which the heat
liberation process with low frequency oscillations is convective, i.e., is determined by the structure of sec-
ondary flows formed in the oscillations. In this case, the Prandtl number Pr having increased, it is neces-
sary to decrease the contribution of conductive terms to the heat transfer process.

We will consider the case where P = 0(e~), i.e., (Pr) = O(1). Then, substituting Egs. 3) and 4) in Eq,.
(1) and collecting terms with like powers of €, we obtain, considering that (ePr) = 0O(1),

aTO/BT = U] (73)
5T1 : 1 0(¢0’ Tﬂ) s 112 2
9t | 1—4r d(r,8)  ePr Ve, (7b)

It follows from Eq. (7a2) that as in the case Pr = 0O(1), to the accuracy of terms of order € the temperature is
time-independent. Considering this fact, we will average Eq. (7b) over the oscillation period. Then, keeping
in mind that y, ~ cos 7, we obtain \72T0 =0, i.e., for moderately large Prandtl numbers the process of heat ex-
change with low frequency oscillations is also conductive,

We will consider the case (e2Pr) = 0(1). Using Egs. (1), 3), (4) and repeating the same procedure used
in deriving Eq. (7), we obtain, to the accuracy of terms of order g2,

aTylot = 0 (8a)
ar, . 1 0, T ) .
v 17 a(g, e)o =0 ' (8b)
or, 1 _[6(1];1, Ty) | 0(¥y Ty) H? )
gt —Tm 0(!‘, U) i ﬁ(f‘, 6) - SZPI’ VZTO' (80)

We will consider Eq. (8b). Since T, is time independent, while ¢, ~cos 7, then

Ty = Tyy(r, 8) &+ Tyylr, 0) sin 7.

Then, averaging Eq. (8c) over the oscillation period, we obtain

S [8(%y Ty) | (¥ Tl)J\_ H e
(Tl - weml, ~ e ®

The second term on the left side of Eq. (9) is equal to zero, since the functions describing the time dependence
of ¥, and T, are orthogonal over the interval [0, 27]. Considering this fact, we write Eq. (9) in the form

st
a{{ 2
1 0(%,Ty) vir,, 10)

T4+r o(r,8)  gipr

where w?t is the stationary component of the flow function.

Thus, for low-frequency oscillations convective heat transfer becomes significant only in the case of
large Prandtl numbers Pr = 0(e™%). Moreover, as follows from Eq. (10), the pulsation components of the veloc-
ity and temperature prove to have no effect on the stationary temperature field, A similar result was obtained
for the case of high-frequency oscillations in [1].

From the structure of Eq. (10) it also follows that in the case where (e2Pr) > 1, near the cylinder sur-
face there will be formed a thermal boundary layer, the thickness of which [considering that near the surface



zpf’t ~1?, and also H = 0(1)] is of the order of O[a(e?Pr)~ 1/3 . Then, introducing the variables corresponding to

the thermal boundary layer,
y = k=, ty(y, 0) = Tylr, 8), k = (e* Pr)-23

and also expanding the flow function zp’?t and temperature in a series in k
Vo = By Ry H O (), ty =ty + klgy + O ()

and substituting in Eq, (10) we obtain, limiting ourselves to terms first order in k:

2
0By Oty, i By Gy, — JF? )
dy a0 96 Ay oy’

where

et (S e (S
1 2 6y2 y-—-o’ 2 [ k ay3 y=0

(11)

We will now determine the explicit form of the function 8. To do this we use the solution of the hydro-

dynamic section of the problem, presented in [4]:

st

+2 [ker2 ( ) keiy, v — kei, ( ) ker, y” sin 20,

where A = kerjy + keidy; kerz(')x =d/dxkeryx; v = H™Y; kerpx, keipx are Thompson functions.

Using Eq. (12), we obtain
1 .
51 = I y2 31n 26
Then we rewrite Eq. (11) in the form

2
" &y,
6y2

ot
ysmq)——- ——yzcosq)—al;’— =

1 . (7 . ’ N
b = z—{v [kers” y keiq v — keif” v kery p] -+  [keiy y kex{”y — ker, y keily]

(13)

where ¢ =26 and is measured from a line coinciding with the direction of cylinder oscillations. Introducing the

variable

_ 1 1/3 Sin1/2 P
z= ( or? Y9 1/3 %
[f sint/2 ydy J
0

we reduce Eq, (13) to an ordinary differential equation

d2 ‘w32 e g,

the solution of which, satisfying the boundary conditions

fp =12 2=0,1%,=0 3 z- oo,

has the form
3
foo =1~ 5773) f St

where I' (@) is 2 gamma function,

Using Eq. (14), we find that the local thermal flux from the cylinder is equal to

ot ~ - .
g=—2 (—3"—) - (To—Tu) = 0,85 4 (PrRel)™ — sin'/? i

1/
[J‘ sin1/? xdx]
®

(14)



A

Then the expression for the local dimensionless heat liberation coefficient, calculated over cylinder diameter,
takes on the form

1/2

Nu = 0,85 Pri/Ref? — T2 ___ (15)

173
[ j‘ sinl/? xdx]
H]

where Rey = Ud/v is the Reynolds number calculated from the mean square pulsation velocity (U = BA/2) and
cylinder diameter,

The distribution of the local heat exchange coefficient along the cylinder surface as calculated by Eq, (15)
is shown in Fig. 1. Also shown is the structure of secondary flows, formed near the cylinder with low-fre-
quency oscillations, taken from [4]. As follows from Fig, 1, the heat exchange coefficient distribution over the
cylinder surface is not uniform. Thus, at the point where the secondary flows are incident on the cylinder sur-
face, which poeint lies on a line coinciding with the oscillation direction, the local heat exchange coefficient
reaches its maximum value, decreasing with movement toward the point of departure of the secondary flows
from the surface, at which peint Nu = 0. A similar distribution for high-frequency cylinder oscillations was
first obtained in [1].

Using Eq. (15), we will calculate an average over the surface for the dimensionless heat exchange coef-
ficient Nu = 0.73Pr1/3Re% 3, or

Nu = 0.73 (Ud/ V Dv)*". (18)

Thus, with low-frequency cylinder oscillations the dimensionless heat exchange coefficient is propor-
tional to the pulsation velocity as U%/%, to the cylinder size as &/, inversely proportional to the thermal dif-
fusivity as D~ 1/3, and to the kinematic viscosity as V'l/s, and in contrast to the case of high-frequency oscilla-
tion, does not depend on frequency.

In [5] results were presented from an experimental investigation of heat exchange with a cylinder 1,98«
1072 mm in diameter, oscillating in a highly viscous liquid (fuel oil, auto oil, spindle oil), The oscillation fre-
quency was varied over the range 1,7-27.0 Hz. Kinematic viscosity was v = (66.2-1.28) - 107* m%*/sec, Prandtl
number Pr = (150~1.4) »10%, and amplitude of cylinder displacement S = (0.25-2.0) - 10~ m, i.e., the majority
of the assumptions made in the theoretical solution of the problem were fulfilled, with the exception of small
amplitude of the medium displacement,

The experimental formula of these authors had the form
Nu = 0.146Re;"Pr™*!,

i.e., the exponent of the Reynolds number practically coincides with the theoretical value, although the depen-
dence on Prandtl number is stronger than theory predicts.

In [6], on the basis of the results of [5] and their own experimental results, the authors recommended
the following empirical expression for calculating heat exchange of a cylinder with low-frequency oscillations:

Nu = 0,482 Rely**Pr*™, (17)

Here the functional connection between the dimensionless heat exchange coefficient and the remaining para-
meters of the process practically coincides with theory.

Equation (17) was also obtained in a recent experimental study [7].

We must note a certain elevation in the values of the heat exchange coefficient calculated with the ana-
Iytical Eq. (16). This disagreement is in our opinion primarily due to disruption of the condition of low oscilla-
tion amplitude, and alsoc to the fact that in solution of the thermal part of the problem a velocity profile ob-
tained by the Ozeen method was used, this method giving elevated velocity values near the cylinder surface due
to an increased contribution of convective terms to the motion equation, and thus elevating the values of the
heat exchange coefficient.
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EFFECT OF THERMAL DIFFUSION ON FREE CONVECTION
OF A BINARY MIXTURE IN A CAVITY WITH A
SQUARE CROSS~SECTION

M, I. Kislukhin, A, Yu. Pinyagin, UDC 532,72
and A, F. Pshenichnikov

It is well known that the phenomencn of thermal diffusion can greatly affect the convective stability of a
binary mixture consisting of nonreacting components [1], Convective stabﬂity of equilibrium in a liquid binary
mixture in a planar horizontal layer was studied in {2-9]. In [3-7], a hysteresis loop was obtained in Benard's
problem for a two-component fluid and in [3~5] this problem was also studied experimentally, The effect of
thermal diffusion on the convective stability of equilibrium and convective heat and mass transfer in a vertical
gap was studied in [1, 10, 11], In [12], the effect of thermal diffusion on heat transfer through a boundary layer
was studied theoretically and experimentally, Free convection of a binary fluid mixture in an inclined rectan-
gular cavity was investigated in [13].

In this paper, we study numerically free convection of a binary mixture in a square horizontal cylinder
taking into account thermal diffusion. We examine lateral heating, It is assumed that thermal diffusion is the
only reason for the appearance of a concentration inhomogeneity, The investigation is carried out for gas mix~
tures and aqueous solutions of salts, It is shown that in the presence of weak convection the normal thermal
diffusion can double the convective velocity, while anamolous thermal diffusion can decrease it, For Rayleigh
numbers of the order of 10°, a vertical component appears in the concentration gradient at the center of the
cavity., For anamalous thermal diffusion, it turns out that the maximum value of the stream function is not
a unique function of the Rayleigh number (hysteresis is observed). For Rayleigh numbers exceeding 10%, the
effect of thermal diffusion on convective motion can be neglected.

We will examine aninfinite square horizontal cylinder with height a, filled with a binary fluid mixture,
The lateral boundaries are impenetrable and have different temperatures T, and Ty. The upper and lower
boundaries are also impenetrable to matter and have a linear temperataure distribution., If there is no convec-
tion in the cavity, then the concentration field arising as a result of the Soret effect is nearly linear [14, 15].
The maximum concentration differentials are very small [11], so that we will neglect energy flow caused by
the inhomogeneity of the mixture. The Soret coefficient is assumed to be constant, The system of dimension-
less equations describing two dimensional motion has the form [1, 16]

b A% 9 M o [or |, 8C
—t == -+ : —~
gt er 8y dy  ox Ag GI’{\ ax }’
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